

Darian Pollock, Giuliana Miguel-Pacheco, Herman Coceancigh, Yolande Seddon NSERC IRC research advisory committee meeting May 4th 2021

BE WHAT

Program objectives

- 1) To understand how early life management contributes to pig robustness, sociability and welfare outcomes in the growing pig
- 2) Identify if promotion of play, can increase physiological and psychological robustness
- 3) Identify and validate biological markers indicative of welfare states in swine
- 4) Understand the value of animal-based post-mortem indicators of welfare

UNIVERSITY OF Goal 3 – Biomarkers of welfare

The Challenge

- Increasing pressure for industries to respond to welfare concerns
 - Complex welfare questions being posed, challenging to answer.
- Criticism and bias's towards production system types

The need:

- Objective measures that remove bias
- Longer-term measures measures that could reflect on the animals overall welfare over their productive life, or a specific duration of time.
 - Understand housing system effects.
- Can be used in all systems
 - a) New research tools help answer tough questions
 - b) Industry monitoring tools sensitive, accurate monitoring of animal welfare lead time indicators of change to reduce loss.
 - c) Genetic selection tools

UNIVERSITY OF Goal 3 – Objectives and Progress

- **Objective** Broad: Identify and validate a selection of promising biomarkers as they relate to welfare state in swine.
- Areas of focus

1) Chronic measures: Identify a robust method to evaluate welfare over a longer period of time

- Evaluate if an animal is affected by chronic stress, is coping or demonstrates stress resilience.
- Cortisol and DHEA in swine hair

2) Automated monitoring of consumption behaviours

- Can it provide a lead time indicator of change
- Allows linking welfare measures to productivity

UNIVERSITY OF SASKATCHEWAN Progress: Automatic Feeders

- Sixteen feeders installed at the Prairie Swine Centre January 2020
 - Funded by: Canada Foundation for Innovation and University of Saskatchewan
- 8 x nursery feeders, 8 x grow/finish feeders

1st <u>Piglet</u> feeders in

 No issues with weaned piglets feeding from them at weaning

Increases research capabilities

- Precise & objective feeding data
- Link productivity, physiology, behaviour and welfare

Automated filling system

Adjustable gates (width & height) access to feeder for 1 animal

No more than 15 animals per feeder

HE WORLD NEEDS

Feeding data

- Individual feeding information:
 - a) Feed consumption per visit and day (kg)
 - b) Time of feeding
 - c) Number of feeding events per day
 - d) Duration of time feeding per day

May 2020: Test run of system

June 2020: Experimental pigs fed on feeders

<u>In 2020</u>

Goal 3: Influence of rearing environment on cortisol and DHEA as measures of long term stress physiology in swine

- Pigs tracked birth to slaughter first full test run on feeders over seasons
 - Identify the seasonal challenges
- Systematic weekly welfare and health monitoring applied
- Captured tail biting outbreak

In 2021 & 2022

Pigs studied under the research projects of Goal 1 and 2 will be fed on feeders

- Consumption data
- Production efficiency
 - Layer measures to model against welfare
 measures
 BE WHAT THE WORLD NEEDS

Automated Feeders: Data management

@ WOG_[InstReaded		- 0
Hokofarm IVOG System Dashboard	Overview	Settings
Overview Chost with Difference between convecting with Registric facilitations Filling place Unregistered avoidable with live into	Annals with Little visits	
Data from C5-File of 9-3-2021 , 40 stations, 397 animals, 0 unregistered animals		
7 Statione with more than 10 ghost visits		
5 Statione with more than 0,1 difference between start-weight and end-weight of previous visit		
2 Stations with negative feed-intakes of more than 0.5 kills		
3 Stations with filling-pulses lass than 0.3 kilo		
© Stations with unregistered animals		
37 animale with less than 1.5 kilo feed-intaka		
2 animals with less than 5 visits		

- 2020 Developed a system for efficient data handling
 - Linux script for data handling
 - Collate feeding data from all pens automatically
- 2021:
 - Data collation refining and maintenance for studies - Herman Coceancigh
 - Data statistics for first Goal 3 experiment – Darian Pollock
 - Hokofarm IVOG Testing new software

BE WHAT THE WORLD NEEDS

SASKATCHEWAN Biomarkers of Welfare: Chronic measures

- Lack of objective biomarkers to inform on long-term stress in swine.
- Biomarkers of chronic stress could:
- Inform on animal welfare in chronic conditions
 - Confinement housing, interventions
- Evaluate stress coping attempts in animals
- Evaluate stress responsiveness in animals
 - Markers to assist in genetic selection.

ASKATCHEWAN Cortisol and Dehydroepiandrosterone (DHEA)

- Hormones released from the hypothalamic-pituitary-adrenal axis
 - a) Higher levels of cortisol suggestive of increased stress (Casal et al., 2016; Morgan et al., 2019).
 - b) Higher levels of DHEA suggestive of increased physical and mental well-being
- Blunted circadian rhythms suggested to relate to chronic stress (Munsterhjelm et al. 2010).
- Cortisol and DHEA identified as having largely opposing functions
 - Their ratio is suggested to be a superior measure (Kamin and Kertes, 2016).
 - Higher ratio suggestive of increased stress and chronic health issues.

SASKATCHEWAN Cortisol/DHEA ratio: Area of investigation

- Can we identify pigs that are stress susceptible vs resilient this ratio?
- Low cortisol/DHEA = more stress resilient.

Hair cortisol and DHEA concentration, hair cortisol/DHEA ratio, and interpretation (low/high ratio) of 19-week finisher pigs (n=8) raised under the same housing conditions*.

* Pigs selected from two pens within the same batch.

Pollock et al. 2020, unpublished – NSERC IRC funded work

UNIVERSITY OF Goal 3 – Biomarkers: Cortisol & DHEA

Exp. 1: 2019 – 2020: Evaluate how wash solvent (used to clean hair) & contamination level (fecal/urine)

- Influence analyte levels
- Validate a commercially available DHEA Elisa kit (Salimetrics, CA, USA).
- Status: Complete, methodology publication submitted to journal, Animals,
 - Special journal issue exploring physiology of chronic welfare measures
- Methods: Hair sampled from 8 x growing pigs (900mg/pig)
 - Divided into groups of 100g and tested for
 - Washing with: Isopropanol vs methanol
 - Wash solvent influences analyte extraction in different species
 - Influence of hair type and lipids
 - Contamination: 25% and 75% of hair shaft for 48 hrs with feces and urine mix obtain from pig pen.
 - Number of washes required to remove contamination vs remove analyte
 - Validate assays for DHEA simultaneously.

BE WHAT THE WORLD NEEDS

Experiment 1: Factors influencing hair cortisol and DHEA

Exp. 1 Conclusions and Value

- Results suggest changes to swine cortisol and DHEA hair protocol.
- Recommendations:
 - Do no use contaminated hair.
 - Wash visibly clean hair with three, three-minute methanol washes and visibly contaminated hair with five three-minute methanol washes.
- Value: More reliable measurement of cortisol and DHEA in swine hair

BE WHAT THE WORLD NEEDS

SASKATCHEWAN Goal 3 – Biomarkers: Cortisol & DHEA

Exp. 2: 2020 – 2021: Evaluate the influence of rearing environment on DHEA and cortisol as measures of longer term stress physiology in swine Objectives:

- i) Establish system and pig age reference values;
- ii) a) Understand how the circadian rhythm development of hormone levels and
 - b) Innate behavioural stress response
 - influences concentration of these hormones accumulating in hair
- iii) Determine whether rearing system influences concentrations of DHEA, cortisol
 - and their ratio in saliva and hair
- iv) Determine whether concentrations of hair cortisol, DHEA and the ratio relate to measures of welfare
- This is necessary work to ensure correct interpretation of results in randomly sampled pigs.
 Status: Data collection complete, statistical analysis in progress.

Methods

- 16 litters reared birth slaughter:
- 50% received straw from birth, half raised in standard environment.
- Hair shaved each growth stage
- Saliva taken over 12 hours at 12 and 20 weeks
 - Track circadian rhythm development
- Productivity taken each growth stage
 - Weights/stage: in and out
 - Individual pig feed intake: nursery and grow/finish
- Behaviour and health measures taken at repeated points from birth to slaughter.

Results: First look

Hair hormone values (N = 64/stage): Mean and standard deviation

	Cortisol (pg/mg)		DHEA (pg/mg)		Cortisol:DHEA ratio	
	12 weeks	20 weeks	12 weeks	20 weeks	12 weeks	20 weeks
Straw	11.5 ± 5.00	9.30 ± 4.76	28.4 ± 15.3	27.7 ± 16.9	0.55 ± 0.62	0.43 ± 0.27
Barren	13.2 ± 4.34	9.27 ± 3.70	27.5 ± 14.8	26.0 ± 16.6	0.61 ± 0.27	0.76 ± 1.49

Analysis in progress:

- 1. Saliva hormone concentrations, and their circadian rhythm
- 2. Feeding patterns, average daily gain
- 3. Behaviour budgets Skin lesions

Preliminary statistics to be completed by June 2021

Complete results by August 2021

Industry Value

- The hair cortisol:DHEA ratio shows promise as a relatively non-invasive, and objective biomarker of chronic stress in grower pigs.
- Exp. 2: Identifies if system specific effects need to be taken into consideration
- How individual pig characteristics relate to hair hormone levels
- Align measures to behavioural indicators of welfare
- Feeding data: Individual HPA activity to productivity

Future studies: Exp. 3 and 4

Experiment 3: Summer 2021

- To determine if early life manipulations influences the concentrations of hair cortisol and DHEA, in addition to their ratio, and how this relates to measures of welfare, productivity and resilience
- Results expected in 2022

Experiment 4: Possible avenue....

- To identify the ability of hair cortisol, DHEA, and their ratio to inform on pig welfare on commercial farms.
- Can the measure be predictive of welfare status and meat quality?
- Data collection could align to Goal 4 data collection
- Results could be delivered in 2022